

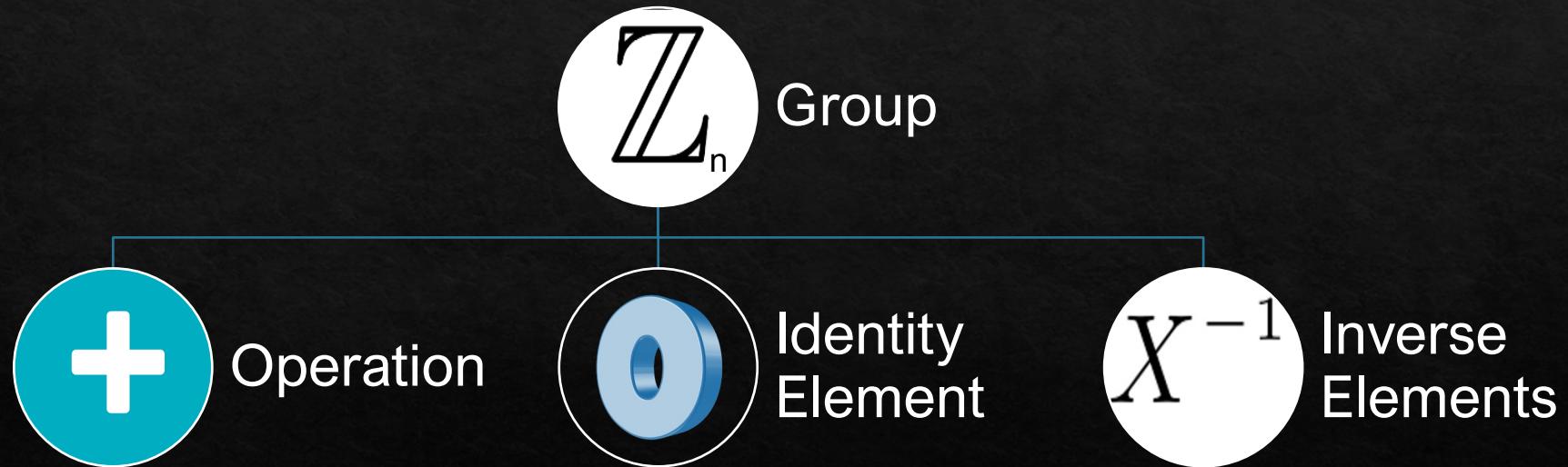
Random Walks on Products of Free Groups

Micky Santiago-Zayas

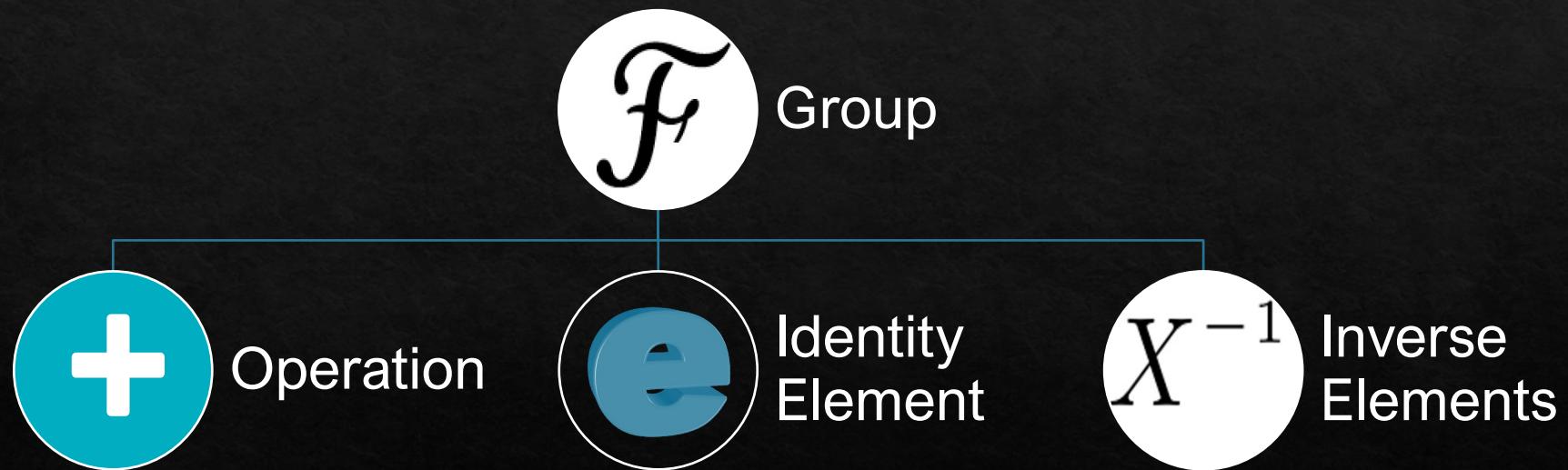
Dr. Thomas Sinclair

Summer 2022

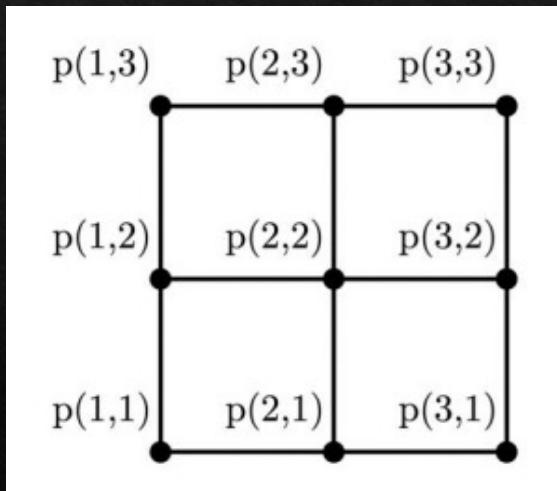
Abelian Group



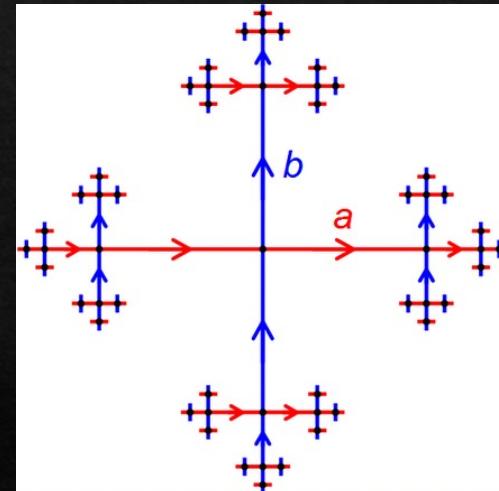
Free Group



Generators



This Figure was taken from Jarutatsanangkoon (2018).



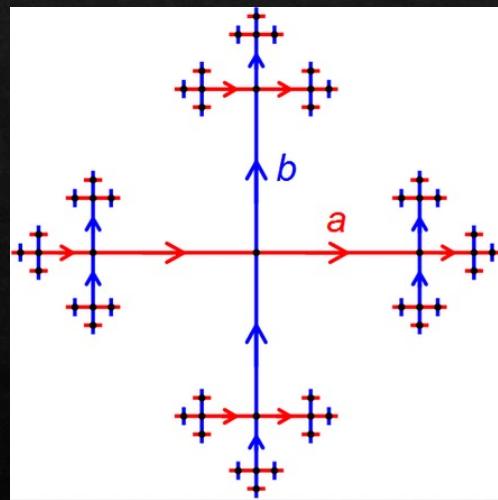
This Figure was taken from Wikipedia.

Notation

- ❖ $\mu(n)$
 - ❖ The probability of moving in the direction n
- ❖ $\check{\mu}(n)$
 - ❖ The probability of moving in direction inverse to n so that $\check{\mu}(n) = \mu(n^{-1})$
- ❖ $\sigma = \mu * \check{\mu}$
 - ❖ σ contains the probability of staying in place
- ❖ The spectral norm (denoted $\|\mu\| = \|\sigma\|^{1/2}$)
 - ❖ The probability of returning to the identity after infinitely many steps
 - ❖ $\|\sigma\| = \lim_{n \rightarrow \infty} \sqrt[n]{\sigma^{(n)}(e)}$

Leinert Property

- ❖ The only way to return is through backtracking



This Figure was taken from Wikipedia.

Background

Goal

Methods

Results

Summary

Significance

Goal

Methods

Results

Goal

Relax the backtracking behavior

Woess solves for the radius of convergence of $G(z)$ Leinert Property and Recursion

$$G(z) = \sum_{n=0}^{\infty} \mu^{(n)}(e) z^{2n}$$

The spectral norm is the inverse of the radius of convergence of $G(z)$

Goal

An instance of this is the product of free groups.

Background

Goal

Methods

Results

Summary

Significance

Goal

Methods

Results

Methods

Random walks can be simulated with
random unitary matrices

Background

Goal

Methods

Results

Summary

Significance

Goal

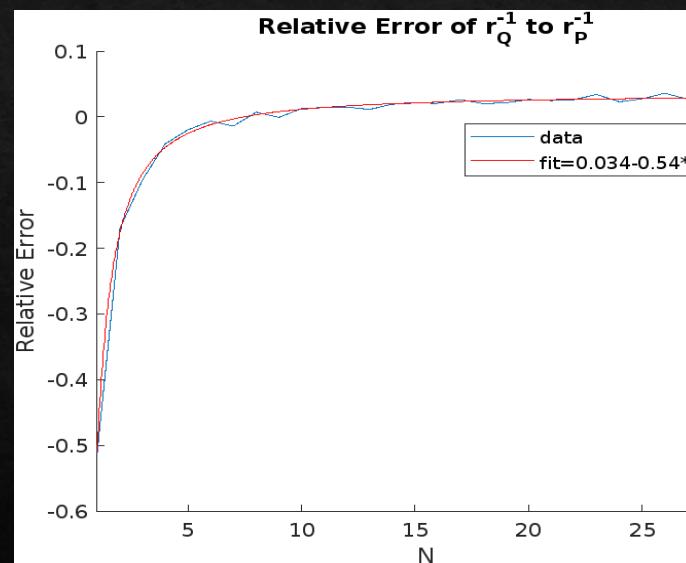
Methods

Results

Results

Upper Bound for bad walks

Found an equation $Q(t,z)$ whose r^1 bounds the spectral norm



Background

Goal

Methods

Results

Summary

Significance

Goal

Consider Almost Leinert

Methods

Counting through Random
Unitary Matrices

Results

~3% of relative error

Results have implications in various fields.

- ❖ The most prominent fields are:
 - ❖ Mathematics
 - ❖ Algebra, Linear Algebra, and Graph Theory
 - ❖ Quantum Mechanics
 - ❖ Electron behavior

Acknowledgements

- ❖ Team Members: Colton Griffin, Sanchita Chakraborty, and Yuxiao Wang
- ❖ Research Mentor: Dr. Thomas Sinclair
- ❖ Director of LSAMP: Dr. Ignacio Camarillo
- ❖ Funders:
 - ❖ Louis Stokes Alliance Minority Alliance Program (LSAMP)
 - ❖ NSF grant DMS-2055155

References

- ❖ Akemann, C. A., & Ostrand, P. A. (1976). Computing norms in Group C^* -algebras. *American Journal of Mathematics*, 98(4), 1015. <https://doi.org/10.2307/2374039>
- ❖ Hastings, M. B. (2007). Random unitaries give quantum expanders. *Physical Review A*, 76(3). <https://doi.org/10.1103/physreva.76.032315>
- ❖ Woess, W. (1986). A short computation of the norms of free convolution operators. *Proceedings of the American Mathematical Society*, 96(1), 167–170. <https://doi.org/10.1090/s0002-9939-1986-0813831-3>
- ❖ Definitions and figures from Mathworld, Jarutatsanangkoon, P., Mohammed, W. S., & Pijitrojana, W. (2018). Transformation optics based on unitary vectors and Fermat's principle for arbitrary spatial transformation design. *Applied Optics*, 57(29), 8632-8639 and Wikipedia.